Show simple item record

dc.contributor.authorUrban, Karsten
dc.contributor.authorPatera, Anthony T.
dc.date.accessioned2015-07-07T16:03:52Z
dc.date.available2015-07-07T16:03:52Z
dc.date.issued2013-10
dc.date.submitted2012-12
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.urihttp://hdl.handle.net/1721.1/97697
dc.description.abstractWe consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant β[subscript δ], the inverse of which enters into error estimates: β[subscript δ] is unity for the heat equation; β[subscript δ] decreases only linearly in time for non-coercive (but asymptotically stable) convection operators. The latter in turn permits effective long-time a posteriori error bounds for reduced basis approximations, in sharp contrast to classical (pessimistic) exponentially growing energy estimates. The paper contains a full analysis and various extensions for the formulation introduced briefly by Urban and Patera (2012) as well as numerical results for a model reaction-convection-diffusion equation.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-09-1-0613)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0713)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/S0025-5718-2013-02782-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleAn improved error bound for reduced basis approximation of linear parabolic problemsen_US
dc.typeArticleen_US
dc.identifier.citationUrban, Karsten, and Anthony T. Patera. “An Improved Error Bound for Reduced Basis Approximation of Linear Parabolic Problems.” Mathematics of Computation 83, no. 288 (October 23, 2013): 1599–1615. © 2013 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorPatera, Anthony T.en_US
dc.relation.journalMathematics of Computationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsUrban, Karsten; Patera, Anthony T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2631-6463
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record