MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics

Author(s)
Maday, Yvon; Patera, Anthony T.; Yano, Masayuki; Penn, James Douglass
Thumbnail
DownloadPatera_A parameterized.pdf (5.948Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present a parameterized-background data-weak (PBDW) formulation of the variational data assimilation (state estimation) problem for systems modeled by partial differential equations. The main contributions are a constrained optimization weak framework informed by the notion of experimentally observable spaces; a priori and a posteriori error estimates for the field and associated linear-functional outputs; weak greedy construction of prior (background) spaces associated with an underlying potentially high-dimensional parametric manifold; stability-informed choice of observation functionals and related sensor locations; and finally, output prediction from the optimality saddle in O(M[superscript 3) operations, where M is the number of experimental observations. We present results for a synthetic Helmholtz acoustics model problem to illustrate the elements of the methodology and confirm the numerical properties suggested by the theory. To conclude, we consider a physical raised-box acoustic resonator chamber: we integrate the PBDW methodology and a Robotic Observation Platform to achieve real-time in situ state estimation of the time-harmonic pressure field; we demonstrate the considerable improvement in prediction provided by the integration of a best-knowledge model and experimental observations; we extract, even from these results with real data, the numerical trends indicated by the theoretical convergence and stability analyses.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/97702
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
International Journal for Numerical Methods in Engineering
Publisher
Wiley Blackwell
Citation
Maday, Yvon, Anthony T. Patera, James D. Penn, and Masayuki Yano. “A Parameterized-Background Data-Weak Approach to Variational Data Assimilation: Formulation, Analysis, and Application to Acoustics.” Int. J. Numer. Meth. Engng 102, no. 5 (August 15, 2014): 933–965.
Version: Original manuscript
ISSN
00295981
1097-0207

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.