Show simple item record

dc.contributor.authorMaday, Yvon
dc.contributor.authorPatera, Anthony T.
dc.contributor.authorYano, Masayuki
dc.contributor.authorPenn, James Douglass
dc.date.accessioned2015-07-07T16:55:48Z
dc.date.available2015-07-07T16:55:48Z
dc.date.issued2014-08
dc.date.submitted2014-06
dc.identifier.issn00295981
dc.identifier.issn1097-0207
dc.identifier.urihttp://hdl.handle.net/1721.1/97702
dc.description.abstractWe present a parameterized-background data-weak (PBDW) formulation of the variational data assimilation (state estimation) problem for systems modeled by partial differential equations. The main contributions are a constrained optimization weak framework informed by the notion of experimentally observable spaces; a priori and a posteriori error estimates for the field and associated linear-functional outputs; weak greedy construction of prior (background) spaces associated with an underlying potentially high-dimensional parametric manifold; stability-informed choice of observation functionals and related sensor locations; and finally, output prediction from the optimality saddle in O(M[superscript 3) operations, where M is the number of experimental observations. We present results for a synthetic Helmholtz acoustics model problem to illustrate the elements of the methodology and confirm the numerical properties suggested by the theory. To conclude, we consider a physical raised-box acoustic resonator chamber: we integrate the PBDW methodology and a Robotic Observation Platform to achieve real-time in situ state estimation of the time-harmonic pressure field; we demonstrate the considerable improvement in prediction provided by the integration of a best-knowledge model and experimental observations; we extract, even from these results with real data, the numerical trends indicated by the theoretical convergence and stability analyses.en_US
dc.description.sponsorshipFondation Sciences Mathematiques de Parisen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-09-1-0613)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0713)en_US
dc.description.sponsorshipSUTD-MIT International Design Centreen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/nme.4747en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acousticsen_US
dc.typeArticleen_US
dc.identifier.citationMaday, Yvon, Anthony T. Patera, James D. Penn, and Masayuki Yano. “A Parameterized-Background Data-Weak Approach to Variational Data Assimilation: Formulation, Analysis, and Application to Acoustics.” Int. J. Numer. Meth. Engng 102, no. 5 (August 15, 2014): 933–965.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorPatera, Anthony T.en_US
dc.contributor.mitauthorPenn, James Douglassen_US
dc.contributor.mitauthorYano, Masayukien_US
dc.relation.journalInternational Journal for Numerical Methods in Engineeringen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMaday, Yvon; Patera, Anthony T.; Penn, James D.; Yano, Masayukien_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7882-2483
dc.identifier.orcidhttps://orcid.org/0000-0002-8323-9054
dc.identifier.orcidhttps://orcid.org/0000-0002-2631-6463
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record