MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells

Author(s)
Han, Binghong; Carlton, Christopher; Kongkanand, Anusorn; Kukreja, Ratandeep S.; Theobald, Brian R.; Gan, Lin; O'Malley, Rachel; Strasser, Peter; Wagner, Frederick T.; Shao-Horn, Yang; ... Show more Show less
Thumbnail
DownloadShao-Horn_record activity.pdf (853.8Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 Unported Licence http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We demonstrate the unprecedented proton exchange membrane fuel cell (PEMFC) performance durability of a family of dealloyed Pt–Ni nanoparticle catalysts for the oxygen reduction reaction (ORR), exceeding scientific and technological state-of-art activity and stability targets. We provide atomic-scale insight into key factors controlling the stability of the cathode catalyst by studying the influence of particle size, the dealloying protocol and post-acid-treatment annealing on nanoporosity and passivation of the alloy nanoparticles. Scanning transmission electron microscopy coupled to energy dispersive spectroscopy data revealed the compositional variations of Ni in the particle surface and core, which were combined with an analysis of the particle morphology evolution during PEMFC voltage cycling; together, this enabled the elucidation of alloy structure and compositions conducive to long-term PEMFC device stability. We found that smaller size, less-oxidative acid treatment and annealing significantly reduced Ni leaching and nanoporosity formation while encouraged surface passivation, all resulting in improved stability and higher catalytic ORR activity. This study demonstrates a successful example of how a translation of basic catalysis research into a real-life device technology may be done.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/97720
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Electrochemical Energy Laboratory
Journal
Energy and Environmental Science
Publisher
Royal Society of Chemistry
Citation
Han, Binghong, Christopher E. Carlton, Anusorn Kongkanand, Ratandeep S. Kukreja, Brian R. Theobald, Lin Gan, Rachel O’Malley, Peter Strasser, Frederick T. Wagner, and Yang Shao-Horn. “Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells.” Energy Environ. Sci. 8, no. 1 (2015): 258–266.
Version: Final published version
ISSN
1754-5692
1754-5706

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.