Show simple item record

dc.contributor.authorHan, Binghong
dc.contributor.authorCarlton, Christopher
dc.contributor.authorKongkanand, Anusorn
dc.contributor.authorKukreja, Ratandeep S.
dc.contributor.authorTheobald, Brian R.
dc.contributor.authorGan, Lin
dc.contributor.authorO'Malley, Rachel
dc.contributor.authorStrasser, Peter
dc.contributor.authorWagner, Frederick T.
dc.contributor.authorShao-Horn, Yang
dc.date.accessioned2015-07-13T14:24:08Z
dc.date.available2015-07-13T14:24:08Z
dc.date.issued2014-09
dc.date.submitted2014-07
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/97720
dc.description.abstractWe demonstrate the unprecedented proton exchange membrane fuel cell (PEMFC) performance durability of a family of dealloyed Pt–Ni nanoparticle catalysts for the oxygen reduction reaction (ORR), exceeding scientific and technological state-of-art activity and stability targets. We provide atomic-scale insight into key factors controlling the stability of the cathode catalyst by studying the influence of particle size, the dealloying protocol and post-acid-treatment annealing on nanoporosity and passivation of the alloy nanoparticles. Scanning transmission electron microscopy coupled to energy dispersive spectroscopy data revealed the compositional variations of Ni in the particle surface and core, which were combined with an analysis of the particle morphology evolution during PEMFC voltage cycling; together, this enabled the elucidation of alloy structure and compositions conducive to long-term PEMFC device stability. We found that smaller size, less-oxidative acid treatment and annealing significantly reduced Ni leaching and nanoporosity formation while encouraged surface passivation, all resulting in improved stability and higher catalytic ORR activity. This study demonstrates a successful example of how a translation of basic catalysis research into a real-life device technology may be done.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Energy Efficiency and Renewable Energy (Grant DE-EE0000458)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c4ee02144den_US
dc.rightsCreative Commons Attribution 3.0 Unported Licenceen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleRecord activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cellsen_US
dc.typeArticleen_US
dc.identifier.citationHan, Binghong, Christopher E. Carlton, Anusorn Kongkanand, Ratandeep S. Kukreja, Brian R. Theobald, Lin Gan, Rachel O’Malley, Peter Strasser, Frederick T. Wagner, and Yang Shao-Horn. “Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells.” Energy Environ. Sci. 8, no. 1 (2015): 258–266.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Electrochemical Energy Laboratoryen_US
dc.contributor.mitauthorHan, Binghongen_US
dc.contributor.mitauthorCarlton, Christopheren_US
dc.contributor.mitauthorShao-Horn, Yangen_US
dc.relation.journalEnergy and Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHan, Binghong; Carlton, Christopher E.; Kongkanand, Anusorn; Kukreja, Ratandeep S.; Theobald, Brian R.; Gan, Lin; O'Malley, Rachel; Strasser, Peter; Wagner, Frederick T.; Shao-Horn, Yangen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2919-3235
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record