Show simple item record

dc.contributor.authorSeto, Jennifer E.
dc.contributor.authorPolat, Baris E.
dc.contributor.authorBlankschtein, Daniel
dc.contributor.authorLanger, Robert
dc.contributor.authorLopez, Renata F. V.
dc.date.accessioned2015-10-13T18:31:34Z
dc.date.available2015-10-13T18:31:34Z
dc.date.issued2010-03
dc.date.submitted2010-03
dc.identifier.issn01683659
dc.identifier.urihttp://hdl.handle.net/1721.1/99232
dc.description.abstractThe simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700 μm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB-00351)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipConselho Nacional de Pesquisas (Brazil)en_US
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Pauloen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jconrel.2010.03.013en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleEffects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skinen_US
dc.typeArticleen_US
dc.identifier.citationSeto, Jennifer E., Baris E. Polat, Renata F.V. Lopez, Daniel Blankschtein, and Robert Langer. “Effects of Ultrasound and Sodium Lauryl Sulfate on the Transdermal Delivery of Hydrophilic Permeants: Comparative in Vitro Studies with Full-Thickness and Split-Thickness Pig and Human Skin.” Journal of Controlled Release 145, no. 1 (July 1, 2010): 26–32.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorSeto, Jennifer E.en_US
dc.contributor.mitauthorPolat, Baris E.en_US
dc.contributor.mitauthorLopez, Renata F. V.en_US
dc.contributor.mitauthorBlankschtein, Danielen_US
dc.contributor.mitauthorLanger, Roberten_US
dc.relation.journalJournal of Controlled Releaseen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSeto, Jennifer E.; Polat, Baris E.; Lopez, Renata F.V.; Blankschtein, Daniel; Langer, Roberten_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7836-415X
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record