Show simple item record

dc.contributor.authorBrophy, Jennifer Ann
dc.contributor.authorVoigt, Christopher A.
dc.date.accessioned2015-10-30T17:22:28Z
dc.date.available2015-10-30T17:22:28Z
dc.date.issued2014-04
dc.date.submitted2014-01
dc.identifier.issn1548-7091
dc.identifier.issn1548-7105
dc.identifier.urihttp://hdl.handle.net/1721.1/99527
dc.description.abstractCells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)en_US
dc.description.sponsorshipLife Technologies, Inc. (A114510)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmeth.2926en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titlePrinciples of genetic circuit designen_US
dc.typeArticleen_US
dc.identifier.citationBrophy, Jennifer A N, and Christopher A Voigt. “Principles of Genetic Circuit Design.” Nat Meth 11, no. 5 (April 29, 2014): 508–520.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorBrophy, Jennifer Annen_US
dc.contributor.mitauthorVoigt, Christopher A.en_US
dc.relation.journalNature Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBrophy, Jennifer A N; Voigt, Christopher Aen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7808-4281
dc.identifier.orcidhttps://orcid.org/0000-0003-0844-4776
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record