dc.contributor.author | Nayebi, Aran | |
dc.contributor.author | Aaronson, Scott | |
dc.contributor.author | Belovs, Aleksandrs | |
dc.contributor.author | Trevisan, Luca | |
dc.date.accessioned | 2015-11-02T20:33:48Z | |
dc.date.available | 2015-11-02T20:33:48Z | |
dc.date.issued | 2015-09 | |
dc.date.submitted | 2015-04 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/99669 | |
dc.description.abstract | Given a random permutation f : [N] → [N] as a black box and y ∈ [N], we want to output x = f[superscript −1](y). Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but not on the input y. Classically, there is a data structure of size [~ over O](S) and an algorithm that with the help of the data structure, given f(x), can invert f in time [~ over O](T), for every choice of parameters S, T, such that S · T ≥ N. We prove a quantum lower bound of T[superscript 2] · S = [~ over Ω](εN) for quantum algorithms that invert a random permutation f on an ε fraction of inputs, where T is the number of queries to f and S is the amount of advice. This answers an open question of De et al.
We also give a Ω(√N/m) quantum lower bound for the simpler but related Yao’s box problem, which is the problem of recovering a bit x[subscript j], given the ability to query an N-bit string x at any index except the j-th, and also given m bits of classical advice that depend on x but not on j. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Waterman Award) | en_US |
dc.language.iso | en_US | |
dc.publisher | Rinton Press | en_US |
dc.relation.isversionof | http://www.rintonpress.com/journals/qiconline.html#v15n1112 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Quantum Lower Bound for Inverting a Permutation with Advice | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Nayebi, Aran, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. "Quantum Lower Bound for Inverting a Permutation with Advice." Quantum Information and Computation 15(11&12), 901-913. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Aaronson, Scott | en_US |
dc.relation.journal | Quantum Information & Computation | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Nayebi, Aran; Aaronson, Scott; Belovs, Aleksandrs; Trevisan, Luca | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-1333-4045 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |