Show simple item record

dc.contributor.authorNayebi, Aran
dc.contributor.authorAaronson, Scott
dc.contributor.authorBelovs, Aleksandrs
dc.contributor.authorTrevisan, Luca
dc.date.accessioned2015-11-02T20:33:48Z
dc.date.available2015-11-02T20:33:48Z
dc.date.issued2015-09
dc.date.submitted2015-04
dc.identifier.urihttp://hdl.handle.net/1721.1/99669
dc.description.abstractGiven a random permutation f : [N] → [N] as a black box and y ∈ [N], we want to output x = f[superscript −1](y). Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but not on the input y. Classically, there is a data structure of size [~ over O](S) and an algorithm that with the help of the data structure, given f(x), can invert f in time [~ over O](T), for every choice of parameters S, T, such that S · T ≥ N. We prove a quantum lower bound of T[superscript 2] · S = [~ over Ω](εN) for quantum algorithms that invert a random permutation f on an ε fraction of inputs, where T is the number of queries to f and S is the amount of advice. This answers an open question of De et al. We also give a Ω(√N/m) quantum lower bound for the simpler but related Yao’s box problem, which is the problem of recovering a bit x[subscript j], given the ability to query an N-bit string x at any index except the j-th, and also given m bits of classical advice that depend on x but not on j.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Waterman Award)en_US
dc.language.isoen_US
dc.publisherRinton Pressen_US
dc.relation.isversionofhttp://www.rintonpress.com/journals/qiconline.html#v15n1112en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleQuantum Lower Bound for Inverting a Permutation with Adviceen_US
dc.typeArticleen_US
dc.identifier.citationNayebi, Aran, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. "Quantum Lower Bound for Inverting a Permutation with Advice." Quantum Information and Computation 15(11&12), 901-913.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorAaronson, Scotten_US
dc.relation.journalQuantum Information & Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNayebi, Aran; Aaronson, Scott; Belovs, Aleksandrs; Trevisan, Lucaen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1333-4045
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record