MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local SAR, global SAR, transmitter power and excitation accuracy trade-offs in low flip-angle parallel transmit pulse design

Author(s)
Guérin, Bastien; Gebhardt, Matthias; Cauley, Steven; Adalsteinsson, Elfar; Wald, Lawrence L.
Thumbnail
DownloadLocal specific.pdf (3.578Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Alternative title
Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade-offs in low flip-angle parallel transmit pulse design
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Purpose We propose a constrained optimization approach for designing parallel transmit (pTx) pulses satisfying all regulatory and hardware limits. We study the trade-offs between excitation accuracy, local and global specific absorption rate (SAR), and maximum and average power for small flip-angle pTx (eight channels) spokes pulses in the torso at 3 T and in the head at 7 T. Methods We compare the trade-offs between the above-mentioned quantities using the L-curve method. We use a primal-dual algorithm and a compressed set of local SAR matrices to design radio-frequency (RF) pulses satisfying all regulatory (including local SAR) and hardware constraints. Results Local SAR can be substantially reduced (factor of 2 or more) by explicitly constraining it in the pulse design process compared to constraining global SAR or pulse power alone. This often comes at the price of increased pulse power. Conclusion Simultaneous control of power and SAR is needed for the design of pTx pulses that are safe and can be played on the scanner. Constraining a single quantity can create large increase in the others, which can then rise above safety or hardware limits. Simultaneous constraint of local SAR and power is fast enough to be applicable in a clinical setting.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/99687
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Harvard University--MIT Division of Health Sciences and Technology
Journal
Magnetic Resonance in Medicine
Publisher
Wiley Blackwell
Citation
Guérin, Bastien, Matthias Gebhardt, Steven Cauley, Elfar Adalsteinsson, and Lawrence L. Wald. “Local Specific Absorption Rate (SAR), Global SAR, Transmitter Power, and Excitation Accuracy Trade-Offs in Low Flip-Angle Parallel Transmit Pulse Design.” Magn. Reson. Med. 71, no. 4 (June 14, 2013): 1446–1457.
Version: Author's final manuscript
ISSN
07403194
1522-2594

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.