Show simple item record

dc.contributor.authorGuérin, Bastien
dc.contributor.authorGebhardt, Matthias
dc.contributor.authorCauley, Steven
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorWald, Lawrence L.
dc.date.accessioned2015-11-03T18:13:02Z
dc.date.available2015-11-03T18:13:02Z
dc.date.issued2013-06
dc.date.submitted2013-04
dc.identifier.issn07403194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/99687
dc.description.abstractPurpose We propose a constrained optimization approach for designing parallel transmit (pTx) pulses satisfying all regulatory and hardware limits. We study the trade-offs between excitation accuracy, local and global specific absorption rate (SAR), and maximum and average power for small flip-angle pTx (eight channels) spokes pulses in the torso at 3 T and in the head at 7 T. Methods We compare the trade-offs between the above-mentioned quantities using the L-curve method. We use a primal-dual algorithm and a compressed set of local SAR matrices to design radio-frequency (RF) pulses satisfying all regulatory (including local SAR) and hardware constraints. Results Local SAR can be substantially reduced (factor of 2 or more) by explicitly constraining it in the pulse design process compared to constraining global SAR or pulse power alone. This often comes at the price of increased pulse power. Conclusion Simultaneous control of power and SAR is needed for the design of pTx pulses that are safe and can be played on the scanner. Constraining a single quantity can create large increase in the others, which can then rise above safety or hardware limits. Simultaneous constraint of local SAR and power is fast enough to be applicable in a clinical setting.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01EB-0068547)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01EB-007942)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant P41EB-015896)en_US
dc.description.sponsorshipSiemens-MIT Allianceen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.24800en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleLocal SAR, global SAR, transmitter power and excitation accuracy trade-offs in low flip-angle parallel transmit pulse designen_US
dc.title.alternativeLocal specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade-offs in low flip-angle parallel transmit pulse designen_US
dc.typeArticleen_US
dc.identifier.citationGuérin, Bastien, Matthias Gebhardt, Steven Cauley, Elfar Adalsteinsson, and Lawrence L. Wald. “Local Specific Absorption Rate (SAR), Global SAR, Transmitter Power, and Excitation Accuracy Trade-Offs in Low Flip-Angle Parallel Transmit Pulse Design.” Magn. Reson. Med. 71, no. 4 (June 14, 2013): 1446–1457.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGuérin, Bastien; Gebhardt, Matthias; Cauley, Steven; Adalsteinsson, Elfar; Wald, Lawrence L.en_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record