MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testing Poisson Binomial Distributions

Author(s)
Acharya, Jayadev; Daskalakis, Konstantinos
Thumbnail
DownloadDaskalakis_Testing poisson.pdf (222.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A Poisson Binomial distribution over n variables is the distribution of the sum of n independent Bernoullis. We provide a sample near-optimal algorithm for testing whether a distribution P supported on {0, …, n} to which we have sample access is a Poisson Binomial distribution, or far from all Poisson Binomial distributions. The sample complexity of our algorithm is O(n[superscript 1/4]) to which we provide a matching lower bound. We note that our sample complexity improves quadratically upon that of the naive “learn followed by tolerant-test” approach, while instance optimal identity testing [VV14] is not applicable since we are looking to simultaneously test against a whole family of distributions.
Date issued
2015
URI
http://hdl.handle.net/1721.1/99965
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms
Publisher
Society for Industrial and Applied Mathematics
Citation
Acharya, Jayadev, and Constantinos Daskalakis. “Testing Poisson Binomial Distributions.” Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (December 22, 2014): 1829–1840.
Version: Original manuscript
ISBN
978-1-61197-374-7
978-1-61197-373-0

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.