| dc.contributor.author | Acharya, Jayadev | |
| dc.contributor.author | Daskalakis, Konstantinos | |
| dc.date.accessioned | 2015-11-20T18:00:54Z | |
| dc.date.available | 2015-11-20T18:00:54Z | |
| dc.date.issued | 2015 | |
| dc.identifier.isbn | 978-1-61197-374-7 | |
| dc.identifier.isbn | 978-1-61197-373-0 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/99965 | |
| dc.description.abstract | A Poisson Binomial distribution over n variables is the distribution of the sum of n independent Bernoullis. We provide a sample near-optimal algorithm for testing whether a distribution P supported on {0, …, n} to which we have sample access is a Poisson Binomial distribution, or far from all Poisson Binomial distributions. The sample complexity of our algorithm is O(n[superscript 1/4]) to which we provide a matching lower bound. We note that our sample complexity improves quadratically upon that of the naive “learn followed by tolerant-test” approach, while instance optimal identity testing [VV14] is not applicable since we are looking to simultaneously test against a whole family of distributions. | en_US |
| dc.description.sponsorship | Shell-MITEI Seed Fund Program | en_US |
| dc.description.sponsorship | Alfred P. Sloan Foundation (Fellowship) | en_US |
| dc.description.sponsorship | Microsoft Research (Faculty Fellowship) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Award CCF-0953960) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Award CCF-1101491) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1137/1.9781611973730.122 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | Testing Poisson Binomial Distributions | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Acharya, Jayadev, and Constantinos Daskalakis. “Testing Poisson Binomial Distributions.” Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (December 22, 2014): 1829–1840. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.mitauthor | Acharya, Jayadev | en_US |
| dc.contributor.mitauthor | Daskalakis, Konstantinos | en_US |
| dc.relation.journal | Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dspace.orderedauthors | Acharya, Jayadev; Daskalakis, Constantinos | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0001-6416-2904 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-5451-0490 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |