MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetization Reversal in Ferromagnetic Films Patterned with Antiferromagnetic Gratings of Various Sizes

Author(s)
Liu, Frank; Ross, Caroline A.
Thumbnail
DownloadPhysRevApplied.4.054005.pdf (2.238Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The magnetic switching behavior in continuous NiFe films patterned with IrMn gratings is investigated experimentally and with micromagnetic simulations. The samples made by a two-step deposition process consist of a 10-nm-thick NiFe layer on which is placed 10-nm-thick IrMn stripes with width from 100 to 500 nm and period from 240 nm to 1  μm. Exchange bias is introduced by field cooling in directions parallel or perpendicular to the IrMn stripes. The samples display a two-step hysteresis loop for higher stripe width and period, as the pinned and unpinned regions of the NiFe reverse independently but a one-step loop for lower stripe periods. The transition between these regimes is reproduced by micromagnetic modeling.
Date issued
2015-11
URI
http://hdl.handle.net/1721.1/99982
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review Applied
Publisher
American Physical Society
Citation
Liu, F., and C. A. Ross. “Magnetization Reversal in Ferromagnetic Films Patterned with Antiferromagnetic Gratings of Various Sizes.” Physical Review Applied 4, no. 5 (November 2015). © 2015 American Physical Society
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.