MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuously Flattening Polyhedra Using Straight Skeletons

Author(s)
Demaine, Erik D.; Demaine, Martin L.; Itoh, Jin-ichi; Lubiw, Anna; Nara, Chie; O'Rourke, Joseph; Abel, Zachary Ryan; ... Show more Show less
Thumbnail
DownloadDemaine_Continuously flattening.pdf (1.276Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We prove that a surprisingly simple algorithm folds the surface of every convex polyhedron, in any dimension, into a flat folding by a continuous motion, while preserving intrinsic distances and avoiding crossings. The flattening respects the straight-skeleton gluing, meaning that points of the polyhedron touched by a common ball inside the polyhedron come into contact in the flat folding, which answers an open question in the book Geometric Folding Algorithms. The primary creases in our folding process can be found in quadratic time, though necessarily, creases must roll continuously, and we show that the full crease pattern can be exponential in size. We show that our method solves the fold-and-cut problem for convex polyhedra in any dimension. As an additional application, we show how a limiting form of our algorithm gives a general design technique for flat origami tessellations, for any spiderweb (planar graph with all-positive equilibrium stress).
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/99990
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the Annual Symposium on Computational Geometry (SOCG '14)
Publisher
Association for Computing Machinery (ACM)
Citation
Zachary Abel, Erik D. Demaine, Martin L. Demaine, Jin-ichi Itoh, Anna Lubiw, Chie Nara, and Joseph O'Rourke. 2014. Continuously Flattening Polyhedra Using Straight Skeletons. In Proceedings of the thirtieth annual symposium on Computational geometry (SOCG '14). ACM, New York, NY, USA, Pages 396, 10 pages.
Version: Author's final manuscript
ISBN
9781450325943

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.