Show simple item record

dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorItoh, Jin-ichi
dc.contributor.authorLubiw, Anna
dc.contributor.authorNara, Chie
dc.contributor.authorO'Rourke, Joseph
dc.contributor.authorAbel, Zachary Ryan
dc.date.accessioned2015-11-23T15:29:18Z
dc.date.available2015-11-23T15:29:18Z
dc.date.issued2014-06
dc.identifier.isbn9781450325943
dc.identifier.urihttp://hdl.handle.net/1721.1/99990
dc.description.abstractWe prove that a surprisingly simple algorithm folds the surface of every convex polyhedron, in any dimension, into a flat folding by a continuous motion, while preserving intrinsic distances and avoiding crossings. The flattening respects the straight-skeleton gluing, meaning that points of the polyhedron touched by a common ball inside the polyhedron come into contact in the flat folding, which answers an open question in the book Geometric Folding Algorithms. The primary creases in our folding process can be found in quadratic time, though necessarily, creases must roll continuously, and we show that the full crease pattern can be exponential in size. We show that our method solves the fold-and-cut problem for convex polyhedra in any dimension. As an additional application, we show how a limiting form of our algorithm gives a general design technique for flat origami tessellations, for any spiderweb (planar graph with all-positive equilibrium stress).en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2582112.2582171en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleContinuously Flattening Polyhedra Using Straight Skeletonsen_US
dc.typeArticleen_US
dc.identifier.citationZachary Abel, Erik D. Demaine, Martin L. Demaine, Jin-ichi Itoh, Anna Lubiw, Chie Nara, and Joseph O'Rourke. 2014. Continuously Flattening Polyhedra Using Straight Skeletons. In Proceedings of the thirtieth annual symposium on Computational geometry (SOCG '14). ACM, New York, NY, USA, Pages 396, 10 pages.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAbel, Zachary Ryanen_US
dc.contributor.mitauthorDemaine, Erik D.en_US
dc.contributor.mitauthorDemaine, Martin L.en_US
dc.relation.journalProceedings of the Annual Symposium on Computational Geometry (SOCG '14)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAbel, Zachary; Demaine, Erik D.; Demaine, Martin L.; Itoh, Jin-ichi; Lubiw, Anna; Nara, Chie; O'Rourke, Josephen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
dc.identifier.orcidhttps://orcid.org/0000-0002-4295-1117
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record