A neurophysiological-metabolic model for burst suppression

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1073/pnas.1121461109">http://dx.doi.org/10.1073/pnas.1121461109</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Jan 07 10:40:21 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/102335">http://hdl.handle.net/1721.1/102335</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
A neurophysiological–metabolic model for burst suppression

ShiNung Ching\textsuperscript{a,b,1}, Patrick L. Purdon\textsuperscript{a,b,c}, Sujith Vijayan\textsuperscript{d}, Nancy J. Kopell\textsuperscript{d,1}, and Emery N. Brown\textsuperscript{a,b,c,e}

\textsuperscript{a}Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114; \textsuperscript{b}Department of Brain and Cognitive Science, and \textsuperscript{c}Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139; \textsuperscript{d}Harvard Medical School, Cambridge, MA 02115; and \textsuperscript{e}Department of Mathematics and Statistics, Boston University, Boston, MA 02215

Contributed by N. Kopell, December 27, 2011 (sent for review November 18, 2011)

**Burst suppression**—an electroencephalogram (EEG) pattern in which high-voltage activity alternates with isoelectric quiescence. It is characteristic of an inactivated brain and is commonly observed at deep levels of general anesthesia, hypothermia, and in pathological conditions such as coma and early infantile encephalopathy. We propose a unifying mechanism for burst suppression that accounts for all of these conditions. By constructing a biophysical computational model, we show how the prevailing features of burst suppression may arise through the interaction between neuronal dynamics and brain metabolism. In each condition, the model suggests that a decrease in cerebral metabolic rate, coupled with the stabilizing properties of ATP-gated potassium channels, leads to the characteristic epochs of suppression. Consequently, the model makes a number of specific predictions of experimental and clinical relevance.

**Prevailing Features of Burst Suppression**
To constrain the model, we first consider three prevailing features of burst suppression, summarized in refs. 6 and 9, for which there is clinical and experimental evidence. The first feature of note is the synchrony of burst onset (i.e., bursts begin and end nearly simultaneously across the entire scalp). Such a spatially homogeneous behavior immediately suggests that a very low-order dynamic mechanism underlies burst suppression. Some studies have suggested that asynchronous burst suppression can arise in the case of large-scale cortical deafferentation (14, 15). In such settings, large-scale differences in regional blood supply and autoregulation may prevent the uniformity typically associated with burst suppression.

A second important feature of burst suppression is its parametric sensitivity to the level of brain depression—for instance, depth of general anesthesia. In particular, the burst suppression ratio (BSR)—the fraction of time spent in suppression—is known to increase as general anesthesia deepens (16). Eventually, with sufficient quantities of drug, a completely isoelectric (flattline) EEG can be achieved. A similar progressive increase in BSR can be observed during hypothermia (see below). Thus, the burst suppression pattern is not a discrete state, but occurs on a continuum guided by a changing underlying biophysical process.

Finally, we note the significant difference in timescales between burst suppression and other neural activity associated with an inactivated brain state, specifically, the 0.5- to 2-Hz slow/delta oscillation commonly observed during sleep and general anesthesia. Burst suppression occurs on a much slower timescale than these oscillations. Bursts may last multiple seconds interspersed with as long as 10–20 s of suppression (Fig. 4A and Fig. 2).

Author contributions: E.N.B., N.J.K., and S.C. designed modeling research; E.N.B. and P.L.P. designed experimental research; S.C. and P.L.P. performed research; S.V. contributed model concepts and parameterizations; S.C. and P.L.P. analyzed data; and S.C., E.N.B., and N.J.K. wrote the paper.

The authors declare no conflict of interest.

\textsuperscript{1}To whom correspondence may be addressed. E-mail: shinung@neurostat.mit.edu or njk@bu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121461109/-/DCSupplemental.
Moreover, unlike slow oscillations, burst suppression is not periodic (17). Indeed, it has been suggested that slow oscillations are contained within bursts (11), indicating that burst suppression may be governed by a more global dynamic process.

**Additional Data and Constraints**

To develop additional constraints, we examine burst suppression EEG recordings from healthy volunteers anesthetized with the widely used anesthetic propofol. These recordings were collected as part of a larger study on the electrophysiological and behavioral effects of propofol general anesthesia (18).

Fig. 1A shows a representative epoch of burst suppression from left- and right-frontal electrodes from such a subject. As is typical in burst suppression, the bursts begin and end synchronously between hemispheres. Fig. 1B shows the spectrogram of a frontal electrode at a deep, but not burst-suppression, general anesthesia. The alpha rhythm associated, described in ref. 19, is manifest. (C) At a deeper level of general anesthesia, burst suppression is achieved (the spectrogram clearly displays epochs of quiescence). When a burst occurs, the alpha activity is recovered. (D) Alpha peak during deep, but not burst-suppression, general anesthesia. Spectrum was averaged from 25 4-s epochs. (E) Alpha peak during burst suppression. Spectrum was averaged from 25 burst epochs.

This observation provides an important insight: The mechanisms for alpha rhythmogenesis survive the onset of burst suppression. A similar feature has been observed during burst suppression induced by isoflurane general anesthesia, in which slow-wave and delta activity persists during the burst epochs (11). The propofol-induced alpha is thought to involve potentiation of gamma aminobutyric acid (GABA) inhibitory currents in thalamocortical loops (20, 21). The recovery of these mechanisms during bursts suggests that a more global dynamic perturbation, (i.e., not simply an increase in GABA, must be responsible for creating the epochs of suppression).

**Approach: A Link to Metabolism**

To develop a modeling approach that accounts for the above features, we look to the common aspects of the different burst suppression etiologies—specifically, their relationship to aberrant neurometabolic dynamics. Clearly, hypoxic–ischemic coma is associated with severe changes to brain metabolism and CMRO (6, 22). Early infantile encephalopathy that is not directly linked to a hypoxic–ischemic event, [e.g., Ohtahara’s syndrome (7, 8)], is nevertheless associated with brain atrophy and metabolic dysfunction (23).

A reduced CMRO is also characteristic of burst suppression during hypothermia (3), [i.e., brain cooling, which is frequently used to induce or maintain medical coma during surgeries that involve circulatory arrest (4, 24) or for cerebral protection after cardiac arrest]. An example of this is shown in Fig. 2, which shows a frontal EEG from a patient undergoing circulatory rewarming after induced hypothermia during cardiac surgery (SI Methods). As rewarming occurs, the BSR decreases until a continuous EEG is recovered. This gradual decrease in BSR is similar to the progression observed during emergence from general anesthesia. In the context of anesthetic drugs, it is known that most intravenous GABAergic induction agents lead to significantly reduced CMRO (25). Those that are associated with increased CMRO, such as ketamine, do not lead to the classical pattern of burst suppression at clinically relevant dose levels (26).

This evidence suggests a link between reduced cerebral metabolism and the state of burst suppression. At the neuronal network level, a candidate for providing this link is the adenosine triphosphate (ATP)-gated potassium channel (K_ATP), which is thought to provide neuronal protection during hypoxic–ischemic events (27, 28). It has been shown that, in certain cortical areas, this channel may lead to very slow (<0.5 Hz) oscillatory activity (29). The involvement of this channel—or one similar in behavior—in burst suppression is investigated in the subsequent sections of this paper.

**Objectives**

We seek a biophysical model that accounts for the following features of burst suppression: (i) the quasiperiodic onset and offset of bursts across the scalp; (ii) the very slow timescales associated with burst and suppression duration; (iii) the parametric modulation of BSR as a function of anesthetic dose, hypothermia, or metabolic reduction; and (iv) the association of burst suppression with states of lowered cerebral metabolism.

![Fig. 2. Burst suppression in frontal EEG of a human undergoing circulatory rewarming following hypothermic cardiac surgery. Patient was cooled to a peak hypothermic temperature of 18 °C before eventual rewarming. Observe the gradual decrease in BSR as temperature increases until continuous electrical activity is recovered. Two 40-s detailed epochs are shown.](Image)
Methods

Model Structure. We construct a model consisting of biophysical cortical neurons that are described by voltage-gated conductance equations of the Hodgkin-Huxley type (30). The primary feature of the model is the aforementioned $K_{ATP}$ channel, which modulates neuronal firing as a function of ATP production. The rate of ATP production is, in turn, directly modulated by CMRO (31, 32). The schematic of the model is shown in Fig. 3. The neuronal network consists of cortical pyramidial neurons and interneurons that produce neuronal oscillations on timescales commensurate with the EEG observed during general anesthesia (19, 20). To this network, we add dynamics associated with ATP consumption, in the form of the sodium–ATP pump, which is thought to be the major consumer of cerebral ATP (29, 33). Changes to the rate of ATP production can be related to each of the etiologies of burst suppression (Fig. 3B). In the case of general anesthesia, downregulation of neuronal firing through enhanced synaptic inhibition will lead to an autoregulatory decrease in CMRO (25). Other physiological perturbations, such as hypothermia or hypoxic/ischemic injury, may directly down-regulate brain metabolism without changing synaptic properties (3, 6). For the purposes of our modeling study, we manipulate the rate of ATP production as a free parameter.

In the model, all cells are described using differential equations of the form

$$\dot{c}_m V = - \sum I_{\text{memb}} - \sum I_{\text{syn}} + I_{\text{app}},$$

where $I_{\text{memb}}$ and $I_{\text{syn}}$ are membrane and synaptic currents, respectively, and $I_{\text{app}}$ represents random external noise. We illustrate the main results using small networks of two principal cell types, cortical pyramidial cells and inhibitory interneurons. We consider model networks of up to 20 cells.

The link to metabolic dynamics comes through the ATP-gated potassium membrane current, $I_{\text{KATP}}$, which is a component of $I_{\text{memb}}$ in [1] and is defined by

$$I_{\text{KATP}} = g_{\text{KATP}} z (V - E_K),$$

where $g_{\text{KATP}}$ is the channel conductance, $V$ is the membrane potential and $E_K$ is the potassium channel reversal potential. The gating variable $z$ is $z = (1 + 10/\text{ATP})^{-1}$, defined in terms of the ATP concentration [ATP], which itself is governed by the exchange of sodium and ATP (29, 34):

$$\frac{[\text{KATP}]}{\text{ATP}} = \text{JATP} ([\text{ATP}]_{\text{max}} - [\text{ATP}]) - K_m [\text{Na}]^3 [\text{ATP}].$$

Here, the kinetic constants $F$ and $K_m$ govern the Na–ATP pump dynamics. The parameter $J_{\text{ATP}}$ is the production rate of ATP that is known to be directly coupled to the cerebral metabolic rate (32). As a surrogate for the metabolic rate, we directly manipulate $J_{\text{ATP}}$ over a range of 30–50% of baseline, consistent with studies of anesthetic and hypothermic effects on cerebral metabolism (35, 36). Complete details of the model and simulation parameters are found in SI Methods.

Results

Metabolic Dynamics Lead to Burst-Like Phenomena. We demonstrate the main result using a purely cortical network consisting of reciprocally coupled interneurons and pyramidial cells. As shown previously (20, 37), such a network can be used to explain the progressive reduction in frequency of EEG oscillations observed during induction of general anesthesia via propofol. The mechanism in those models was a drug-induced potentiation of $GABA_A$ inhibitory postsynaptic potentials. Here, we build upon these models by adding metabolic dynamics.

Fig. 4 shows the simulated local field potential (LFP) obtained from a network of 14 cells—10 pyramidial cells and 4 interneurons—for baseline and lowered levels of ATP regeneration, respectively. The traces are from a representative simulation but are repeatable and robust to model noise. As is shown, when the ATP regeneration is lowered to 50% of baseline, continuous neural activity gives way to epochs of quiescence. Bursts and suppression epochs are on the order of 4–10 s and alternate quasiperiodically. When ATP regeneration is lowered further to 30% of baseline (Fig. 4C), a notable increase in the BSR occurs. Fig. S1 shows the computed BSR as a function of $J_{\text{ATP}}$ over the 30–50% range. From Fig. S1 we note that the length of bursts becomes more variable as $J_{\text{ATP}}$ increases.

The mechanisms that underlie this phenomenon can be established using a minimal network consisting of only a single pyramidial cell and a single interneuron. Using this configuration, Fig. 5 shows the output of a cortical pyramidial neuron for 50% and 30% reductions in ATP regeneration rate. Fig. 5A shows the bursting activity, where the spiking within the bursts has alpha periodicity, consistent with ref. 20. The transition from burst to suppression can be understood in terms of the intracellular ATP concentration [ATP]. As shown in Fig. 5B, as a burst occurs, [ATP] decreases by ~25%. This decrease causes an increase in the conductance $g_{\text{KATP}}$ (9) as shown in Fig. 5C. The opening of the $K_{ATP}$ channel leads to hyperpolarization and prevents further spiking. During the suppression, [ATP] slowly recovers according to ref. 10, lowering $g_{\text{KATP}}$ until spiking is once again facilitated.

The quasiperiodicity in Fig. 4 arises from parametric variation within the population of principal cells, along with a small amount of random background activity, which is consistent with ongoing time-varying afferent input to a cortical population (38). In effect, the network inhomogeneity, along with the noise, causes bursts to be initiated at variable times during the recovery of [ATP] (note the time course of [ATP] in Fig. 5). In the small model with no noise the burst suppression pattern is more regular and periodic. Fig. S1 shows the cross-covariance of the simulated LFP for the range 30–50% $J_{\text{ATP}}$, where the quasiperiodicity is reflected by the dominant peak at 0-s lag and the weak side peaks. The variation in interburst timing may also be affected by slow processes such as cerebral blood flow (39), although such factors are not explicitly included in this model.

Spectral Content Is Preserved Within Bursts. The model confirms that spectral content remains intact within burst epochs. Fig. 6 shows the spectrograms of the simulations of baseline and burst-suppression activity. In Fig. 6A we see the 10- to 12-Hz alpha
oscillation that is associated with surgical levels of general anaesthesia (20). In Fig. 6B, we see that this alpha activity persists during the burst intervals. The phenomenon is again due to the underlying dynamics of the $K_{ATP}$ channel. As shown in Fig. 5B, during the periods of activity, $g_{K_{ATP}}$ operates near baseline. Consequently, the neuronal network operates in a normal dynamic range and thus the alpha oscillation is recovered. As the burst progresses, $g_{K_{ATP}}$ eventually moves away from baseline, leading to intraburst frequency variations. Such variability is studied below.

**Spectral Drift Within Burst.** The model exhibits an interesting emergent phenomenon: a progressive slowing in frequency toward the end of a burst. Fig. 7 shows the spectrogram of a 40-s period of burst suppression generated from the model using a parameterization for 30% reduction in ATP production. Here, bursts are 4–6 s in duration. Note that the frequency within each burst slowly decreases from an initial value >10 Hz to a final value near 8 Hz.

As such, the model suggests that the burst suppression morphology is not simply that of an “on–off” switching function. Indeed, the activity appears to wax and wane, with a notable reduction in frequency toward the end of a burst. As seen in Fig. 5, this behavior can be attributed to the slow variation in the $K_{ATP}$ channel as the burst progresses. As $g_{K_{ATP}}$ increases, the pyramidal cell transitions through a regime where spiking occurs but is slowed. Such dynamics are analogous to calcium fluctuations in certain thalamic cells, (i.e., so-called calcium bursts), but on a much slower and irregular timescale. They are a novel property of this model and have yet to be verified in experimental data.

**Limits in High-Frequency Intraburst Activity.** The model predicts limitations to high-frequency neuronal activity during a compromised metabolic regime. Fig. 8 shows the maximum frequency of action potential firing for a pyramidal cell from the model as a function of the time constant and conductance of GABA-ergic inhibition. Note that a 3–4× potentiation in GABA is consistent with common general anaesthetics (20) (1× corresponds to an unanesthetized baseline). When the model is parameterized with baseline values of ATP production, the timescale of inhibition sets the firing rate of the network (and of this pyramidal cell) (38), leading to a progressive reduction in firing from the gamma to the alpha range. Fig. 8 also shows the frequency output over the same range of GABA potentiation for a 30% reduction in $J_{ATP}$. In this scenario, the network produces burst suppression. However, within each burst the spiking frequency is restricted to the 10-Hz range; (i.e., high-frequency firing is impeded by metabolic modulation and not through inhibitory synaptic effects).

**Discussion**

**Neuronal–Metabolic Model for Burst Suppression.** We have developed a model for burst suppression that combines effects at the local circuit level with broader effects on neural metabolism. In the model, the link between these two levels of physiology is through the ATP-gated potassium channel, which is known to be expressed in cortex and subcortical structures (28). Activation of this channel serves to stabilize cell membranes, leading to seconds-long periods of alternating activity and suppression.

It is known that altered neurometabolic dynamics can occur in each of the conditions associated with burst suppression: in general anesthesia, through a reduction in neural activity and subsequent reductions in CMRO (25, 36); in hypoxic/ischemic injury, through aberrant reductions in metabolic regulation due to diffuse injury or through direct oxidative stress (6, 22); in hypothermia, through direct reductions in metabolic rate (3, 35); and in developmental encephalopathy, through neural and metabolic dysfunction (23). Implicating brain metabolism in the neuronal mechanisms of burst suppression establishes a unifying physiologic connection between the main etiologies of the phenomenon.

The model provides an explanation of the central features of burst suppression: (i) The progressive and continuous increase in BSR with deeper levels of inactivation is due to a progressive reduction in metabolism, for instance through a decrease in CMRO; (ii) the spatial synchrony of burst onset and offset may arise through the broad manifestation of such metabolic changes, including in subcortical structures (noting that the present model is spatially compact); and (iii) the recovery of rhythms within bursts is due to recovery of basal dynamics at the neuronal circuit level caused by transient increases in energetics.

In addition, the model suggests new phenomenological features: (iv) a drift in the rhythmic activity through the course of a burst due to slow depletion and subsequent increase in $g_{K_{ATP}}$ and (v) a limitation in high-frequency intraburst activity independent of the strength of synaptic inhibition.

**Fig. 5.** Mechanism associated with burst activity for 50% (Left) and 30% (Right) $J_{ATP}$. (A) A pyramidal cell in a minimal network configuration spikes with interspersed periods of quiescence. (B) During spike epochs, ATP levels are depleted due to compromised metabolism. Once activity ceases, ATP levels slowly regenerate until activity can once again be sustained. (C) Increase ($\kappa$) in the conductance of the $K_{ATP}$-channel. Large increases in $g_{ATP}$ (due to activity-dependent depletion) lead to cessation of spiking.
Consistency with Previous Studies. The model is consistent with descriptions of burst suppression in general anesthesia, hypoxic–ischemic brain injury, and childhood encephalopathy (25). At the cellular level, the model is compatible with ref. 10, which showed wide synchrony of bursts and a strong correlation between cortical spiking and burst activity as measured by field potentials. The fact that some subcortical cells produce spikes during cortical quiescence may be due to differential expression of the \( \text{K}_{\text{ATP}} \) channel in these structures.

It was shown in ref. 11 that burst activity is correlated with a decrease in extracellular calcium. As suggested in ref. 40, the depletion of extracellular calcium would prohibit synaptic transmission, leading to alternating periods of burst and quiescence. Such a mechanism does not immediately account for features such as burst quasiperiodicity or continuous changes in BSR, nor does it provide a transparent link to the range of burst suppression etiologies. Nevertheless, aberrant calcium regulation may certainly be a companion to the mechanisms suggested in our model. Indeed, compromised brain metabolism and ATP production may impair the homeostatic neuronal pumps for maintenance of calcium levels, leading to their depletion through the course of a burst. Suppressing neuronal firing via opening of the \( \text{K}_{\text{ATP}} \) channel maximizes the energetics available for restoration of calcium.

In ref. 11, the authors also show that after the occurrence of a burst, there is a refractory period during which neural activity cannot be induced by external microstimulation. This result is again consistent with our model, in which the \( \text{K}_{\text{ATP}} \) channel remains open after cessation of spiking (due to the time constant of the gating variable \( z \) in ref. 9) (Fig. 5). Thus, excitability of neurons is severely diminished for the period immediately following burst offset. As ATP recovers, it becomes gradually easier to initiate a burst, which may correspond to enhanced excitability (11) and higher variance in burst duration (Fig. S1).

We additionally note that the relationship between metabolic and physiological oscillations has been well studied at the level of mitochondria and cardiac dynamics (41). In this context, models have been developed that suggest how oxidative stress may lead to slow, large-amplitude oscillations and arrhythmia through mechanisms that involve ATP-gated membrane channels (42). Such mechanisms are similar to those in our model for burst suppression.

Model Predictions. The model predicts the manifestation of burst suppression in scenarios involving severely compromised brain metabolism. The practice of induced hypothermia (4) during cardiac surgeries provides a powerful, parametric means of testing this mechanism. In these scenarios, we would expect burst suppression to manifest independently from the anesthetic regimen. Different anesthetic drugs may induce different spectral signatures in the EEG. Accordingly, we expect the spectral signature within a burst to be the same as that of the time period immediately preceding the onset of burst suppression.

The limitation in high-frequency activity during burst suppression may be an additional mechanism that impairs normal cortical function. This is an emergent property of the model and has not yet been investigated in experiments.

Whereas we have specifically implicated the \( \text{K}_{\text{ATP}} \) channel, it is likely that other channels may exhibit similar behavior. Moreover, the mechanism outlined herein is almost certainly related to secondary effects such as the aforementioned regulation of extracellular calcium. The autoregulation of physiological processes such as cerebral blood flow may also be important in burst suppression (39, 43).

The present model does not possess the spatial scale to describe the relationship between disparate brain regions during burst suppression. However, on the basis of the model, we anticipate some degree of variation due to regional metabolic differences.

Relationship with Other Slow Activity Brain Development. Burst suppression is different from slow-wave activity in general anesthesia or sleep. Slow oscillations are thought to be spatially
local, both in cortical location and in depth (44, 45), and occur on a timescale that is faster than that of burst suppression. Moreover, burst suppression does not appear in normal sleep (2). From our model, we anticipate that these oscillations are recovered during bursts.

A phenomenon that may also be related to our model is the so-called *trace alternant*—a burst suppression-like EEG pattern—observed in some healthy newborns (46). The mechanism of our model implies that burst suppression is a means of cell preservation, allowing maximum energetics for basic cell functions, thus preventing collapse of membrane potential in low metabolic states. Similarly, the *trace alternant* may be associated with optimal brain energetics in the absence of higher-order functions during early development.

**Clinical Interpretations and Potential Implications.** The mechanisms of burst suppression presented here reveal the hierarchy in which neural activity is abolished in states of severely reduced brain function. Each successive burst can be viewed as an attempted recovery of basal cortical dynamics. Suppression ensues when there is an imbalance in neuronal activity and available energetics. In extreme cases, such as ischemia, even complete isoelectricity may be observed as a result of metabolic suppression.

These mechanisms have potential implications for brain monitoring and intraoperative care. For instance, a detailed characterization of the burst suppression pattern may enable the detection of cerebral ischemia during surgery (47), perhaps through a change in the spectral characteristic within bursts. Such characterization may also help to differentiate “bursting” in an inactivated brain versus one in a state of seizure (9, 40).

Burst suppression is often used as a target in medically induced coma for brain protection during intensive care (3). The model provides further justification for this technique and may eventually help design paradigms for optimally achieving this brain state using anesthetic drugs and/or hypothermia. For instance, eliciting the metabolic differences between a low BSR—say, a few short bursts per minute—and complete isoelectricity would help refine targets for neuroprotection.

Finally, the model provides a means to explore new therapeutic strategies and pharmacology. It has been reported in animal studies that pyruvate may prolong neural survival during ischemic infarctions (48, 49). Pyruvate is known to stabilize oxidative metabolism by increasing ATP production during hypoxic events. Our model suggests that such an effect should manifest in terms of the BSR—a clinically relevant and testable hypothesis.

**ACKNOWLEDGMENTS.** This study was supported by National Institutes of Health Grants DP1-OD003646, K25-NS057580, and DP2-OD006454 and National Science Foundation Grants DMS-1042134 and DMS-0717670.

The electroencephalogram (EEG) time trace α was obtained by computing $J_\alpha \left( m - \frac{1}{2} \right) - \alpha + \beta - \alpha + \beta$. The baseline conductances in the model are as follows: AMPA: $I_{\text{AMPAn}} = g_{\text{AMPAn}}(V - E_{\text{AMPAn}})$, where $E_{\text{AMPAn}} = 0$. Similarly, for Gamma aminobutyric acid (GABA), $I_{\text{gABA}} = g_{\text{gABA}}(V - E_{\text{gABA}})$, where $E_{\text{gABA}} = -80$ and $\tau_{\text{gABA}} = 5$. The applied current is $I_{\text{app}} = 1.8 + I_{\text{u}}$, where $I_{\text{u}} \sim N(0, 0.1)$. FS cells. FS cells are adapted from ref. 1. The membrane potential for each cell is given by $\dot{V} = I_{\text{app}} - I_{\text{Na}} - I_{\text{K}} - I_{\text{app}} - I_{\text{Leak}}$, where the sodium, potassium, and leak currents are given by Eqs. S1, S2, and S3, respectively. The mean applied current is $I_{\text{app}} = 0.5$.

**Synaptic connectivity.** Synaptic connectivity is modeled as follows: AMPA: $I_{\text{AMPAn}} = g_{\text{AMPAn}}(V - E_{\text{AMPAn}})$, where $E_{\text{AMPAn}} = 0$. Similarly, for Gamma aminobutyric acid (GABA), $I_{\text{gABA}} = g_{\text{gABA}}(V - E_{\text{gABA}})$, where $E_{\text{gABA}} = -80$ and $\tau_{\text{gABA}} = 5$. The baseline conductances in the model are as follows: $I_{\text{Na}} = g_{\text{Na}}(V - E_{\text{Na}})$, $I_{\text{K}} = g_{\text{K}}(V - E_{\text{K}})$, $I_{\text{Leak}} = 0.1(V + 61)$. Adenosine triphosphate (ATP)-gated potassium membrane channel (2, 4): $I_{\text{ATP}} = g_{\text{ATP}}z(V - E_{\text{K}})$, where $E_{\text{K}} = -100$. The kinetic constants are set as $F = 8.8 \times 10^{-5}$ and $K_{\text{m}} = 6 \times 10^{-8}$. The parameter $J_{\text{ATP}}$ is set to 2 at baseline.

**Analysis Methods.** Fig. 1 B and C was obtained by computing spectrograms from bipolar-referenced frontal EEG (1). A 4-s window with 50% overlap was used. The signal shown in Fig. 2 is high-pass filtered above 0.5 Hz. The applied current is $I_{\text{app}} = 1.8 + I_{\text{u}}$, where $I_{\text{u}} \sim N(0, 0.1)$. FS cells. FS cells are adapted from ref. 1. The membrane potential for each cell is given by $\dot{V} = I_{\text{app}} - I_{\text{Na}} - I_{\text{K}} - I_{\text{Leak}}$, where the sodium, potassium, and leak currents are given by Eqs. S1, S2, and S3, respectively. The mean applied current is $I_{\text{app}} = 0.5$.

**Synaptic connectivity.** Synaptic connectivity is modeled as follows: AMPA: $I_{\text{AMPAn}} = g_{\text{AMPAn}}(V - E_{\text{AMPAn}})$, where $E_{\text{AMPAn}} = 0$. Similarly, for Gamma aminobutyric acid (GABA), $I_{\text{gABA}} = g_{\text{gABA}}(V - E_{\text{gABA}})$, where $E_{\text{gABA}} = -80$ and $\tau_{\text{gABA}} = 5$. The baseline conductances in the model are as follows: $I_{\text{Na}} = g_{\text{Na}}(V - E_{\text{Na}})$, $I_{\text{K}} = g_{\text{K}}(V - E_{\text{K}})$, $I_{\text{Leak}} = 0.1(V + 61)$. Adenosine triphosphate (ATP)-gated potassium membrane channel (2, 4): $I_{\text{ATP}} = g_{\text{ATP}}z(V - E_{\text{K}})$, where $E_{\text{K}} = -100$. The kinetic constants are set as $F = 8.8 \times 10^{-5}$ and $K_{\text{m}} = 6 \times 10^{-8}$. The parameter $J_{\text{ATP}}$ is set to 2 at baseline.

**Analysis Methods.** Fig. 1 B and C was obtained by computing spectrograms from bipolar-referenced frontal EEG (1). A 4-s window with 50% overlap was used. The signal shown in Fig. 2 is high-pass filtered above 0.5 Hz. The applied current is $I_{\text{app}} = 1.8 + I_{\text{u}}$, where $I_{\text{u}} \sim N(0, 0.1)$. FS cells. FS cells are adapted from ref. 1. The membrane potential for each cell is given by $\dot{V} = I_{\text{app}} - I_{\text{Na}} - I_{\text{K}} - I_{\text{Leak}}$, where the sodium, potassium, and leak currents are given by Eqs. S1, S2, and S3, respectively. The mean applied current is $I_{\text{app}} = 0.5$.

**Synaptic connectivity.** Synaptic connectivity is modeled as follows: AMPA: $I_{\text{AMPAn}} = g_{\text{AMPAn}}(V - E_{\text{AMPAn}})$, where $E_{\text{AMPAn}} = 0$. Similarly, for Gamma aminobutyric acid (GABA), $I_{\text{gABA}} = g_{\text{gABA}}(V - E_{\text{gABA}})$, where $E_{\text{gABA}} = -80$ and $\tau_{\text{gABA}} = 5$. The baseline conductances in the model are as follows: $I_{\text{Na}} = g_{\text{Na}}(V - E_{\text{Na}})$, $I_{\text{K}} = g_{\text{K}}(V - E_{\text{K}})$, $I_{\text{Leak}} = 0.1(V + 61)$. Adenosine triphosphate (ATP)-gated potassium membrane channel (2, 4): $I_{\text{ATP}} = g_{\text{ATP}}z(V - E_{\text{K}})$, where $E_{\text{K}} = -100$. The kinetic constants are set as $F = 8.8 \times 10^{-5}$ and $K_{\text{m}} = 6 \times 10^{-8}$. The parameter $J_{\text{ATP}}$ is set to 2 at baseline.
suppression ratio (BSR) is obtained by obtaining the ratio of suppression duration to total duration of the simulated signal. Fig. S1B is obtained by computing a cross-covariance of the burst signal. This is a binary signal that takes the value 1 during a burst epoch and 0 elsewhere. Bursts and suppressions are classified according to an amplitude threshold set by visual inspection.

In all spectral analyses, a multitapered fast Fourier transformation (with eight tapers), implemented in the Chronux data analysis package (5), is used.


Fig. S1. Mean BSR and cross-covariance as function of J_{ATP}. n = 10 simulations. (A) The BSR (fraction of time in suppression) decreases as J_{ATP} increases. As J_{ATP} increases the model exhibits more variation in the length of bursts (note the larger SE). (B) The cross-covariance of the burst signal (SI Methods, Analysis Methods) exhibits a sharp peak at 0 s, reflecting the quasiperiodic nature of burst onset/offset. A secondary, but much smaller peak, can sometimes be seen between 3- and 6-s lag, indicating the occasional recurrence of interburst intervals of similar duration.