Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/137678.2

Show simple item record

dc.contributor.authorSong, Hyun Oh
dc.contributor.authorJegelka, Stefanie
dc.contributor.authorRathod, Vivek
dc.contributor.authorMurphy, Kevin
dc.date.accessioned2021-11-08T15:12:27Z
dc.date.available2021-11-08T15:12:27Z
dc.date.issued2017-07
dc.identifier.urihttps://hdl.handle.net/1721.1/137678
dc.description.abstract© 2017 IEEE. Learning image similarity metrics in an end-to-end fashion with deep networks has demonstrated excellent results on tasks such as clustering and retrieval. However, current methods, all focus on a very local view of the data. In this paper, we propose a new metric learning scheme, based on structured prediction, that is aware of the global structure of the embedding space, and which is designed to optimize a clustering quality metric (NMI). We show state of the art performance on standard datasets, such as CUB200-2011 [37], Cars196 [18], and Stanford online products [30] on NMI and R@K evaluation metrics.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/cvpr.2017.237en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDeep Metric Learning via Facility Locationen_US
dc.typeArticleen_US
dc.identifier.citationSong, Hyun Oh, Jegelka, Stefanie, Rathod, Vivek and Murphy, Kevin. 2017. "Deep Metric Learning via Facility Location."
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-03T16:26:05Z
dspace.date.submission2019-06-03T16:26:14Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version