MIT OpenCourseWare
  • OCW home
  • Course List
  • about OCW
  • Help
  • Feedback
  • Support MIT OCW

Lecture Notes

In each session, the lecture topics are covered by the associated set of lecture note files.
 
  
LEC # TOPICS LECTURE NOTES
Week 1
1 Syllabus, Policies and Expectations

Course Introduction

Multi-domain Modeling
Course Introduction (PDF)

Air Pump Model (PDF)
Week 2
2 Review: Network Models of Physical System Dynamics

Bond Graph Notation, Block Diagrams, Causality
Cable Hoist Example (PDF 1) (PDF 2)

Block Diagrams and Bond Graphs (PDF)
3 Review (cont.): Equivalent Behavior in Different Domains Air Pump Revisited (PDF)

Network Modeling Discussion (PDF)
Week 3
4 Thévenin and Norton Equivalent Networks

Impedance Control and Applications
5 Energy-storing Coupling between Domains

Multi-port Capacitor

Maxwell's Reciprocity
Models of Electromagnetism (PDF)

Example: Electrical Transformer (PDF)

Leakage Flux and Multiport Inertias (PDF)

Multiport Energy Storage Elements (PDF)

Linearized Solenoid Model (PDF)

Solenoids and Co-energy (PDF)

Example: Electromagnetic Solenoid (PDF)
Week 4
6 Energy, Co-energy, Legendre Transformation, Causal Assignment

Intrinsic stability
 
7 Review Revisited: Magnetism and Electro-magnetism
Week 5
8 Electro-magnetic-mechanical Transduction

Use of Co-energy Functions
9 Linearized Energy-storing Transducer Models
Week 6
10 Cycle Processes

Work-to-heat Transduction

Thermodynamics of Simple Substances
Heat Transfer and the Second Law (PDF)

Example: Ideal Gas (PDF)

Entropy Production and Nonlinearity (PDF)

Example: Thermal Damping (PDF 1) (PDF 2)

Work-to-Heat Transduction in Thermo-fluid Systems (PDF)
11 Causal Assignments and Co-energy Functions

Second Law for Heat Transfer

Multi-port Resistors
Week 7
12 Nonlinear Mechanical Systems

Modulated Transformers and Gyrators

Nonlinear Mechanics Introduction (PDF)

Canonical Transformation Theory (PDF)

Hamilton-Jacobi Theory (PDF)

Jacobi Canonical Transformations and Numerical Integration (PDF 1) (PDF 2)

Equivalent Behavior Through Modulated Transformers (PDF)

Example: Spring Pendulum (PDF)

Week 8
13 Lagrangian Mechanics

Coordinates, State Variables and Independent Energy Storage Variables
Lagrangian and Hamiltonian Forumulations (PDF 1) (PDF 2)

Lagrangian Derivation (PDF)

Modulated Junction Structures (PDF)
14 Nonlinear Mechanical Transformations and Impedance Control Interaction Control (PDF)
Week 9
15 Hamiltonian Mechanics

Stable Interaction Control

Canonical Transformation Theory
Interaction Stability (PDF)
16 Term Project Progress Report Discussion
Week 10
17 Identification of Physical and Behavioral Parameters

Model structure
18 (Internally) Modulated Sources

Non-equilibrium Multi-port Resistors

Nodicity
Nodicity (PDF)
Week 11
19 Amplifying Processes

Small-signal and Large-signal Models
Amplifiers (PDF)

Example: Capstan Amplifier (PDF)
20 Thermodynamics of Open Systems

Convection and Matter Transport

Lagrangian vs. Eulerian Frames
Bernoulli's Equation (PDF)

Convection (PDF 1) (PDF 2)
Week 12
21 Power Conjugates for Matter Transport

Second Law for Non-heat-transfer Processes

Throttling and Mixing
22 Bernoulli's Incompressible Equation

The "Bernoulli Resistor" and "Pseudo-bond-graphs"
Week 13
23 Chemical Reaction and Diffusion Systems

Gibbs-Duhem equation
Reactions and Diffusion (PDF)
Week 14
24 Control-relevant Properties of Physical System Models

Causal Analysis, Relative Degree, Passivity and Interaction Stability
Control-relevant Properties of Physical System Models (PDF)
25 Transmission Line Models

Term Project Presentations
Transmission Line Models (PDF)
Week 15
26 Wrap-up Discussion

Term Project Presentations (cont.)
Wrap-up Discussion (PDF)