LEC # | TOPICS | NOTES |
---|---|---|
1 | Probability spaces, properties of probability | (PDF) |
2-3 | Random variables and their properties, expectation | (PDF) |
4 | Kolmogorov's theorem about consistent distributions | (PDF) |
5 | Laws of large numbers | (PDF) |
6 | Bernstein's polynomials, Hausdorff and de Finetti theorems | (PDF) |
7 | 0-1 laws, convergence of random series | (PDF) |
8 |
Stopping times, Wald's identity Markov property, another proof of SLLN | (PDF) |
9-10 | Convergence of laws, selection theorem | (PDF) |
11 | Characteristic functions, central limit theorem on the real line | (PDF) |
12 | Multivariate normal distributions and central limit theorem | (PDF) |
13 |
Lindeberg's central limit theorem Levy's equivalence theorem, three series theorem | (PDF) |
14 |
Levy's continuity theorem Levy's equivalence theorem, three series theorem (cont.) Conditional expectation | (PDF) |
15-16 |
Martingales, Doob's decomposition Uniform integrability | (PDF) |
17 | Optional stopping, inequalities for Martingales | (PDF) |
18-19 | Convergence of Martingales | (PDF) |
20-21 |
Convergence on metric spaces, Portmanteau theorem Lipschitz functions | (PDF) |
22 | Metrics for convergence of laws, empirical measures | (PDF) |
23 | Convergence and uniform tightness | (PDF) |
24-25 | Strassen's theorem, relationship between metrics | (PDF) |
26-27 | Kantorovich-Rubinstein theorem | (PDF) |
28-29 | Prekopa-Leindler inequality, entropy and concentration | (PDF) |
30 | Stochastic processes, Brownian motion | (PDF) |
31 | Donsker invariance principle | (PDF) |
32-33 | Empirical process and Kolmogorov's chaining | (PDF) |
34-35 | Markov property of Brownian motion, reflection principles | (PDF) |
36 |
Laws of Brownian motion at stopping times Skorohod's imbedding | (PDF) |
37 | Laws of the iterated logarithm | (PDF) |