This is an archived course. A more recent version may be available at ocw.mit.edu.

Lecture Notes

LEC # TOPICS LECTURE NOTES
1 Euclidean Geometry in 3 Dimensions

Geometric Proofs
(PDF)
2 Geometric Vectors and Vector Algebra (PDF)
3 Vector Algebra with Cartesian Coordinates (PDF)
4 Analytic Geometry in 3 Dimensions (This resource may not render correctly in a screen reader.PDF)
5 Calculus of 1-Variable Vector Functions (PDF)
6 Calculus of Vector Functions (PDF)
7 Paths and Curves (PDF)
8 Scalar Fields

Cylindrical Coordinates
(PDF)
9 Linear Approximation and Differentiability

Gradient
(PDF)
10 The Chain Rule (PDF)
11 Elimination Method for the Chain Rule (PDF)
12 Maximum-Minimum Problems (PDF)
13 Constrained Maximum-Minimum Problems (PDF)
14 Multiple Integrals (PDF)
15 Iterated Integrals (PDF)
16 Integrals in Polar, Cylindrical and Spherical Coordinates (PDF)
17 Curvilinear Coordinates

Change of Variables
(PDF)
18 Vector Fields (PDF)
19 Line Integrals (PDF)
20 Conservative Fields (PDF)
21 Line Integrals (cont.)

Conservative Fields (cont.)
(PDF)
22 Surfaces (PDF)
23 Surface Integrals (PDF)
24 Green's Theorem (PDF)
25 Divergence and the Divergence Theorem (PDF)
26 Curl and Stokes' Theorem (PDF)
27 Stokes' Theorem (cont.) (PDF)
28 Physical Applications (PDF)
29 n-Vectors and Matrices (PDF)
30 n-Vectors and Matrices (cont.) (PDF)
31 Equation Systems (PDF)
32 Row Reduction

Determinants
(PDF)
33 Determinants (cont.)

Matrix Algebra
(PDF)
34 Subspaces (PDF)
35 Multivariable Calculus in Higher Dimensions