This is an archived course. A more recent version may be available at ocw.mit.edu.

Lecture Notes

LEC # TOPICS
1 Introduction, Review of Random Variables, Entropy, Mutual Information, Chain Rules (PDF)
2 Jensen's Inequality, Data Processing Theorem, Fanos's Inequality (PDF)
3 Markov Chain, Entropy Rate of Random Processes (PDF)
4 Different Types of Convergence, Asymptotic Equipartition Property (AEP), Typical Set, Joint Typicality (PDF)
5 Data Compression, Kraft Inequality, Optimal Codes (PDF)
6 Huffman Codes, Sensitivity of Distribution, Elias Code (PDF)
7 Gambling (PDF)
8 Channel Capacity, Symmetric and Erasure Channels (PDF)
9 Coding Theorem (PDF)
10 Strong Coding Theorem (PDF)
11 Strong Coding Theorem (cont.) (PDF)
12 Feedback Capacity (PDF)
13 Joint Source Channel Coding (PDF)
14 Differential Entropy (PDF)
  Recitation: Background Materials Review (PDF)
15 Gaussian Channel (PDF)
16 Gaussian Channels: Parallel, Colored Noise, Inter-symbol Interference (PDF)
17 Maximizing Entropy (PDF)
18 Gaussian Channels with Feedback (PDF)
19 Fading Channels (PDF)
20 Types, Universal Source Coding, Sanov's Theorem (PDF)
21 Multiple Access Channels (PDF)
22 Slepian-Wolf Coding (PDF)
23 Broadcast Channels (PDF)
24 Channel Side Information, Wide-band Channels (PDF)